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Summary

Simple formulas for the buckling stress of homogeneous, specially
orthotropic, laminated-composite cylinders are presented that are the
counterpart of the classical buckling formula for an isotropic cylinder.
The formulas are obtained by using nondimensional parameters and
equations that facilitate general validation, and are validated against the
exact solution for a wide range of cylinder geometries and laminate
constructions. The buckling stress is found to be a product of a
nondimensional coefficient, that involves only material properties of the
wall, with the thickness-to-radius ratio of the cylinder and the effective
modulus of the corresponding quasi-isotropic laminate. Unlike the
corresponding isotropic-cylinder solution, that is represented by a single
equation, two equations that depend on the laminate orthotropy, are
needed to obtain the orthotropic-cylinder solution; one for axisymmetric
and one for asymmetric buckling modes. Results are presented that
establish the ranges of the nondimensional parameters and coefficients
used. General results, given in terms of the nondimensional parameters,
are presented that encompass a wide range of geometries and laminate
constructions. These general results also illustrate a wide spectrum of
behavioral trends. Design-oriented results are also presented that provide
a simple, clear indication of laminate composition on critical stress,
critical strain, and axial stiffness. The particular graphical form of these
results that is used in the present study enables rapid trade studies for
different design requirements. One conclusion found in the present study
is that no buckling stress can be achieved for homogeneous specially
orthotropic cylinders that is higher than the corresponding quasi-
isotropic layup. Another conclusion is that the higher values of buckling
stress are associated with higher values of axial strain. An example is
provided to demonstrate the application of these results to thin-walled
column designs.

Symbols

A = 2jTRt	 cylinder cross-sectional area, in 

'14,9	 nondimensional modal amplitudes defined by
equations (12)-(14)

All, Al2, A22, A66	 orthotropic-cylinder membrane stiffnesses, lb/in.

cx	nondimensional coefficient defined by equations (43)

cx	value of cx for quasi-isotropic laminates



d	 bending boundary layer attenuation length defined by
equation (48), in.

D 11, D 12, D22, D66	 orthotropic -cylinder bending stiffnesses, in-lb

Dm( ), D j ), DSO	 nondimensional linear differential operators defined by
equations (3)-(5)

E	 effective modulus of quasi-isotropic laminates, psi

G	 effective shear modulus of quasi-isotropic laminates, psi

E1 , E2, G12	 lamina moduli, psi

Ex, EY, G.Y	effective laminate moduli, psi

I = juR 3t 	 cylinder moment of inertia, in'

I(n.r)	 integer closest to the number given by equation (31)

L	 cylinder length (see figure 2), in.

m	 number of axial half waves in buckle pattern (see equation (12)
and figure 4)

n, ncr	 number of circumferential waves in buckle pattern (see equation
(12) and figures 3 and 4) and value at buckling, respectively

Nx, N"	 compressive axial prebuckling stress resultant and
corresponding value at buckling, respectively

p, P 	 nondimensional loading parameter defined by equation (11)

and corresponding value at buckling, respectively

Q11, Q12, Q2, Q66	 stiffnesses of a homogeneous specially orthotropic
material in a state of plane stress, psi

—0 —90 —9 --B
Q; , Q;; , Q;; , Q;;	 transformed reduced stiffnesses of the 0-degree, 90-degree, and

±6 angle plies, respectively

R	 cylinder radius (see figure 2), in.

t	 cylinder thickness (see figure 2), in.

to , t90 , to	total thickness of the 0-degree, 90-degree, and ±6 angle plies,
respectively, in.
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t o	I	 tB	 thickness fractions of the 0-degree, 90-degree, and A angleto = Y t90 = t > tB = t

plies, respectively

X, y	 cylinder coordinate system (see figure 2), in.

Z = pa,	 Batdorf-Stein Z parameter

ab, a,,,	 nondimensional stiffness-weighted length-to-radius ratios
defined by equations (8) and (6), respectively, and by
equation (17)

R	 nondimensional orthotropy parameter defined by equations (9)
and (19)

Y	 buckling knockdown factor defined by equation (50)

6F	 nondimensional buckling-stress function (see equations (1)
and (2))

6W	 nondimensional radial-displacement field at buckling (see
equations (1) and (2))

F	 parameter defined by equation (34b)

E	 bending boundary layer attenuation tolerance used in

equation (48)

value of the uniform axial strain at buckling and corresponding
value for quasi-isotropic laminates

11 = vR	 nondimensional cylinder circumferential coordinate

0	 lamina fiber angle (see figure 2), degrees

^, T yr	 stiffness-weighted axial-buckle aspect ratio defined by
equation (23) and value at buckling, respectively

It	nondimensional orthotropy parameter defined by equations (7)
and (18), respectively

V 12	 lamina major Poisson's ratio

vxy , vyx	 effective laminate major and minor Poisson's ratios, respectively

v	 effective Poisson's ratio of quasi-isotropic laminates

	

= X	 nondimensional cylinder axial coordinate
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P	 stiffness-weighted radius-to-thickness ratio defined by
equations (10) and (20)

tX 6,
6Ar = t z	 value of the uniform axial stress at buckling and corresponding

value for quasi-isotropic laminates, psi

Introduction

Design of lightweight, high-performance structures is a key element of developing new
spacecraft such as the Altair lunar lander shown in figure 1. For example, the present cost for
placing this vehicle in Earth orbit is approximately $10,000 per pound. As a result, fiber-
reinforced, laminated-composite materials are presently being evaluated for use on Altair. These
advanced composite materials have higher stiffness-to-density ratios, higher strength-to-density
ratios, and very low coefficients of thermal expansion, compared to isotropic materials. In
addition, because laminated composites are composed of layers of an orthotropic material,
oriented at various angles, the potential exists to optimally tailor a laminate to meet a specific set
of structural requirements. Thus, laminated composites offer a desi gn space that is much wider
than that for isotropic materials. However, along with the potential structural performance
benefits of laminate tailoring comes a much more complicated analysis and design process.

An important component of the Altair lunar lander is the leg, which must be buckling resistant
when subjected to compression loads associated with landing. One concept under consideration
is a thin-walled tubular column with a circular cross section. This family of structures is
commonly used in compression applications because of the enhanced load-carrying capability
provided by the cross-sectional curvature. In designing the lander leg, both the local shell-wall
and the overall column buckling modes must be considered. Accurate assessment of local shell-
wall buckling remains a difficult problem because of the inherent sensitivity of the load-carrying
capacity to initial geometric wall imperfections with amplitudes on the order of the nominal wall
thickness.

Structural analysis and desi gn methods for compression-loaded cylinders have been under
development for many years. This effort has focused to a large extent on isotropic cylinders with
monocoque, ring-and-stringer stiffened, or sandwich construction. For example, Switsky & Cary
(reference 1) presented a nondimensional minimum-weight-design procedure in 1963 for
isotropic cylinders that includes the effects of a broad range of problem variables. Sinularly,
Crawford and Burns (reference 2) presented structural efficiency results for isotropic cylinders
with either monocoque, ring-and-stringer stiffened, or sandwich construction about the same
time. Likewise, Cohen (reference 3) presented a study in 1963 on the minimum weight design of
truss-core sandwich cylinders subjected to axial compression. In 1966, Dow and Rosen (reference
4) presented some simple design formulas for buckling of compression-loaded cylinders with
homogeneous specially orthotropic walls and some corresponding structural efficiency results for
laminated composites. Another study that focused on ring-and-stringer stiffened isotropic
cylinders subjected to axial compression was presented by Burns and Almroth (reference 5) in
1966.
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In 1965, the National Aeronautics and Space Administration (NASA) released a set of design
recommendations for buckling of cylindrical shells, known as NASA SP 8007, which was
updated in 1968 (reference 6). This reference documents analysis methods and presents empirical
knockdown factors for isotropic cylinders, of various sizes and loading conditions, that account
for geometric-imperfection sensitivity. These knockdown factors are based on lower bounds to
empirical buckling loads determined from experiments conducted from approximately 1930 to
1967. As a result of the uncertainty in the pedigree of many of the experiments and the actual
nature of the boundary conditions, these knockdown factors are expected to yield overly
conservative designs. This reference also presents the classical analysis method for orthotropic
cylinders that requires a search over a wide range of the possible bucklin g modes to determine the
critical load. As a result of a general lack of experimental data, NASA SP 8007 recommends an
approach for using the empirical knockdown factors obtained for isotropic cylinders to obtain a
conservative estimate of the imperfection sensitivity of orthotropic cylinders. It is important to
point out that no validated design data is given in NASA SP 8007 for laminated-composite
cylinders.

Other studies that have addressed analysis and design methods for compression-loaded
cylinders are given in references 7-19. More recently, Weaver and his colleagues (references 20-
26) have presented a substantial number of results that provide insight into the analysis and design
of laminated-composite cylinders subjected to compression loads. In particular, design charts that
show the effects of cylinder geometry and laminate construction on the boundaries between local
shell-wall buckling, overall column buckling, and compressive strength failure modes are
presented in reference 20. Likewise, the effects of laminate construction on the transition from
shell-wall buckling to overall column buckling and combined interactions are addressed in
reference 23.

As evidenced by the references cited herein, efforts to develop shell-buckling design
technology for Ianinated-composite cylinders have been underway for many years. Despite these
efforts, the technology still has not reached the level of maturity needed to obtain the full weight-
saving potential of shell structures, especially those made of laminated-composite materials. The
major impediment is a lack of validated analysis and design methods. As a result, NASA SP
8007, developed in the late 1960s, is still the primary resource used by American industry for the
design of buckling-resistant cylindrical shells, and is sometimes used outside of its range of
validity to estimate reductions in load-carrying capability caused by initial geometric
imperfections. Another impediment is the lack of relatively simple design formulas that are
accurate enough to establish intuitive design trends for a broad range of problem variables.
Formulas such as these provide a means for navigating a given preliminary-design space in the
early phases of a building-block design process.

One objective of the present study is to present an alternate derivation of the design formulas
presented by Dow and Rosen in 1966 that uses nondimensional parameters and equations to
facilitate validation of the formulas for a wide range of laminate constructions. Other objectives
are to illustrate the effects of laminate orthotropy on behavioral trends and the accuracy of the
design formulas. Another objective is to demonstrate the use of the formulas in developing
design data that captures behavioral trends for a wide range of laminate constructions, and that
augments the results presented in reference 20. Specifically, plots of normalized buckling stress
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versus normalized buckling strain are presented as a function of laminate composition. By
including strain in these plots, both structural stiffness and load-capacity requirements can be
considered in the design process. These formulas and results represent a significant first-
approximation advancement in design technology for compression-loaded laminated-composite
cylinders.

To accomplish these objectives, attention is limited to laminated composites whose dominant
behavioral characteristics can be captured by representing the laminates as an equivalent
homogeneous specially orthotropic shell wall. For example, the allowable range of structural
dimensions for a design may be such that the laminate can be presumed to be composed of
enough plies that are distributed uniformly through the thickness to yield, effectively, a
homogeneous shell wall. As discussed by Weaver and Nemeth (reference 27), most aerospace
design practices limit the use of laminated composites to those that are balanced and
symmetrically laminated. Furthermore, presuming that the cylinder wall is homogeneous and
specially orthotropic is not a serious limitation in a preliminary design process, in many cases.
Therefore, this approach is expected to be relevant to a wide range of practical applications. In
addition, this approach is a logical first step in a building-block approach to more general laminate
constructions. Most importantly, this approach yields significant simplification of the buckling
equations and facilitates the development of simple design formulas in terms of useful
nondimensional parameters and equations.

Subsequently, a set of nondimensional linear bifurcation buckling equations and parameters
are presented for balanced, symmetrically laminated cylinders subjected to uniform axial
compression loads and in a membrane-stress prebuckling state. Anisotropy of the shell wall is
presumed to be negligible. Then, a linear bifurcation buckling analysis is presented for the
classical simply supported boundary conditions that are typically used in preliminary design of
cylinders. Next, the buckling analysis is specialized to homogeneous specially orthotropic
cylinders, the simplified formulas are derived, and important considerations are discussed. The
equations used in the analysis to represent laminates as an equivalent homogeneous specially
orthotropic shell wall are then presented, followed by results. Results that establish the range of
the nondimensional parameters that appear in the buckling analysis and simplified formulas are
presented first. Then, general results that establish behavioral characteristics and trends as a
function of the nondimensional parameter are presented to establish the range of validity of the
approximate formulas. Finally, results that show behavioral characteristics and trends as a
function of laminate construction are presented that should provide an insightful design
perspective for various structural requirements.

Bifurcation Equations

To accomplish the objective of the present study, it is convenient to use the nondimensional
parameters and equations presented in reference 28. When specialized to right circular cylindrical
shells, such as that shown in figure 2, these equations correspond to Donnell-type, linear-
bifurcation buckling equations for symmetric laminates. In particular, the compatibility equation
is given by
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D,,,(6F) = /-12- D,(6W)
	

(1)

and the transverse equilibrium equation is given by

	

D v(6w) + 12 D j6F) _ — 
n 2 aa6

^-

,	 (2)

where D,,,( ), Dv ( ), and D,( ) are nondimensional linear differential operators. The symbol 6W

denotes the nondimensional radial-displacement buckling mode and 6F denotes the corresponding
stress function. For symmetric laminates with negligible coupling between inplane stretching
and shearing deformations, and between pure bending and twisting deformations, these operators
are given by

	

4	 4	 4

D,,,(6F) 
= 1 a 6F + 2u a^6F + an a 6F	 (3)

	

aa, a	 a a',1 2	all

D,(6W) = p a^6W

a^-

D,(6W) =

	

4	 4	 4
-La 6W + 20 a 6W + ab a 6W	 (5)

ab a^	 a^ a^11 	011

The nondimensional coordinates in these equations are defined as- L and it = , where x is

the axial coordinate, y is the circumferential arc-length coordinate, L is the cylinder length, R is
the cylinder radius, 0 15 s 1, and 0 <- 11 <- 27r. The nondimensional parameters appearing in these
equations are given by
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L A22	
(6)

am 
R A„

u= A„A„ - A,, - 2A,,A 66 	 (7)

2A 66 A„A,,

	

a^ = R^D„)4	 (g)
11

	_ D„ + 2D66	(9)

D, Dzz

(4)
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P t	
12 A A D D

( A 11 A 22 — A^,)t2

11	 22	 11 22

	
(10)

where All, A l2, Azv A66, D 11, D 12, D22, and D 66 are the stiffnesses of classical laminated-shell

theory, and the corresponding stiffnesses A16, A261 D16, and D26 are presumed negligible. The
parameter defined by equation ( 10) is a stiffness -weighted thinness parameter, not the Batdorf-
Stein Z parameter defined in reference 27. An analogue of the Batdorf -Stein Z parameter, that

reduces to the Batdorf Z parameter for isotropic shells, is given by the quantity Z = pam . The

quantity p is the loading parameter defined by

p ^2D^^D^^

_	 N,R
	

(11)

where N,, is the magnitude of the uniform compressive axial stress resultant that is presumed to

exist prior to buckling, in classical linear bifurcation analyses.

Buckling Analysis

For the purpose of preliminary design, cylinders with simply supported edges that restrict
circumferential displacements are often used and presumed to yield conservative designs. These
boundary conditions are usually referred to as the classical boundary conditions for simply
supported shells. The nondimensional buckling mode for these boundary conditions is given by

	

6W =,4 sin(ma^:) cos(n] ,J )
	

(12)

where 0 < ^ s 1, 0 sit < 2a, m = 1, 2, 3, ... is the number of axial half-waves, n = 0, 1, 2, ... is
the number of full circumferential waves (see figure 3), and >g is the indeterminate modal
amplitude. A typical buckling mode is shown in figure 4a that exhibits one full axial wave and
four full circumferential waves. The corresponding contour plot of the radial displacement is
shown in figure 4b. Buckling modes with n = 0 and n ;- 0 are referred to herein as
axisymmetric and asymmetric modes, respectively.

Substituting equation ( 12) into equation ( 1) indicates that the stress function can be represented
by

6F = 6 sin(mar^) cos(nri)
	

(13)

where 6 is related to the amplitude 4. Specifically, substituting equations ( 12) and ( 13) into
equation ( 1) yields



2 ^ p m2Jr'
^	 (14)

n 4a 2 + 2un2m2^2 + m JT

a^

Substituting equation (14) into equation (13) and the result into equation (2), along with equation
(12), and setting the coefficient of the trigonometric functions equal to zero yields the following

equation for the eigenvalues p = p(m, n)

	

4 2	 0 0	 ^^
n^2 _ n a,, + 2(3n

2
 + m n- +	 p	 (15)Y	 4	 2

	

MA	 a  namMA
-

+ 2Lrn +
m X 	 am

For a given set of material properties and cylinder dimensions, the nondimensional parameters

appearing in equation (1.5) are fixed values. The nondimensional buckling load, P^^ , is then liven

by the smallest value of p that is found for m = 1, 2, 3, ... and n = 0, 1, 2, .... The

corresponding wave numbers are denoted by in,,,and n,,,.

Equations for Homogeneous Orthotropic Cylinders

For an orthotropic cylinder with a homogeneous wall construction, the shell stiffnesses are
given by

All Al2 0 Q11 Q12 0
A 1 , A 22 0 = t Q 12 Q22 0 (16a)
0	 0 A6, 0	 0 Q"

and

D 11 D I , 0	 3 Q11 Q12 0
D 1 , D,, 0 = 12 Q1, Q2 0	 (16b)
0 0 D ,,	 0 0 Q.

where expressions for Q11, Q12 1 Q22, and Q66 are the stiffnesses of a single layer of homogeneous

orthotropic material in a state of plane stress, referred to the principal material coordinate system.
Expressions for these stiffnesses are found, in terms of material properties, in reference 29 (see
pp. 70-73). Herein, the major and minor principal material coordinate frames are taken to be
aligned with the x and y coordinate frame shown in figure 2. For this special case, the
nondimensional parameters given by equations (6) - (10) become

1
L

Q2, )4
22 4	 (17)

a m =av = —
R Q,1
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- Q11Q22 - Q1 , - 2Q1_'Q66
	

(18)

2Q66 Q11Q22

p = Q12 + 2 Q66	 (19)

^J	 Q11Q22

__ R	 1 _ Q1_	 (20)P	
t	 Q11Q22

The bifurcation buckling loads defined by equations (11) and (15) become

_	 2
12p^2 _ 12N gR _ n4am +

	2 pn' + 
mzX2 

+	 p	 (21)(^ 	 z	 a	 ,

Q11Q22 t	 m A	 U,	 n a,,,,,	 z In2^L-
+ 2utn + 2in 7t
	 am

To obtain a simple, approximate design formula, similar to that given in reference 4, equation

(21) is differentiated as if p = p(m, n) is a continuous function and in 	 n are real variables.

Although not strictly correct, this approach gives useful results for certain ranges of the
nondimensional parameters appearing in equation (21). To obtain a minimum set,

dp = ^m dm + do do = 0	 (22)

To clarify matters, note that
1

u .,,	 L ( Q2, ) 4 ___ k	 (23)
mac = m__R Q,,

Because in the number of axial half eaves in a given bifurcation eigenvector, the quantity L/m
is the axial half-wave length of the eigenvector, and T, represents a stiffness-weighted axial-
buckle aspect ratio. As the cylinder length increases, k behaves like a continuous variable and
minimization of equation (21) by differentiation with respect to k represents solutions for an
infinitely long cylinder that buckles into a local shell mode and not into an overall column mode.
By using equation (23), equation (21) becomes

2

p"n2 = n'k2 + 2^n2 + 1 +	 12p	 (24)
n 4k' + 2un 2 + 1,

Enforcing LP = 0 gives
ak
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n 4 - 1 f n 4 + 2un 2 
+ 1 12_ 

12p  
=0

Likewise, enforcing an = 0 gives

n2 + (3 ) n 4 + 2un
2
 + 14 -
 

12p-
 '(n'+ «,) = 0	 (26)

Inspection of equations (25) and (26) indicates that when (3 = u, both equations are satisfied
when

n4 + 2u.2^ + 14 = - ^p	
(27a)

and

k -	 ^-

Substituting equation (27a) into equation (24) gives

pc,=—
4	 p	 (28a)

which is physically inadmissible. Similarly, equation (27b) gives

4	 p	 (28b)p M =

Thus, equation (27b), with n = nCZ and k = kc, and equation (28b) correspond to the physical

solution for n = 0, 1, 2, ... .

For the general case of (3 u, a solution to equations (25) and (26) is found for values of

n 5- 0 as follows. Equation (25) is satisfied by picking n = j and then substituting this value

into equation (26) to get

(1+P)(1+u)-3pzk4=0	 (29)

which yields
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1

L 
1 + f^)( ,1 + «) l

a = L	 J	 (30)
3P

Substituting this result into n = k gives

	

P	
4

n, =	
3 -

(1+P)(1 +it) (31)

Next, equations (30) and (31) are substituted into equation (24) to get

12Nx^R
2
 _ 4 ^ P	 1 + J3	 (32a)

per = ^'- Q11Q?
'_ t 3	 ^^

1+ t

for values of n = 1, 2, .... Observe that this equation includes the solution for the case of R = [I
given by equation (28b). The solution for the case of n = 0 is obtained by substituting n = 0 into
equation (24) and then minimizing with respect to ^.. The results are

4 ^ P	 (32b)Pa =

1

[12P 2
1 _ 

4	 (32c)

Thus, for a given set of problem parameters, the critical load is given by the smallest value of
equations (32a) and (32b). Inspection of these equations reveals that the n = 0 solution given by
equation (32b) is the smallest for values of (3 > Lt.

In general, equation (31), for n 9--0, yields non-integer values for ncr because n has been
treated as a continuous variable in the minimization process. Thus, the periodicity of the buckle
pattern defined by equation (12), and illustrated in figure 3, is generally violated, which
introduces errors into the solution. To obtain the correct solution for an infinitely long cylinder,

nor must be an integer. An improved solution is obtained by defining

n- = n, (1 + s)	 (33a)

and

kCr = 1^	 (33b)
n.,

Substituting equation (33a) for n and (33b) for k into equation (24) gives

12



_	 12NxrR
2
	_ 2	 P	 1 + (3 (	 1	 (34a)

+^^ 1+2E+E - +?	 3	 _

it 	 t	 1	 1 + 2E + E

The improvement in the solution now comes down to the choice of E. In the present study,

	

E = I^n eC) — neL	
(34b)

ner

is used, where I(n^ r) denotes the integer closest to the number given by equation (31).

An expression for the critical stress of a geometrically perfect cylinder, for the general case of
(3 u and the special case of (3 = [c, is obtained directly from the equation (34a). Using equation

er

(20) and the formula for the critical stress, 6x r = EX equation (34a) becomes

	

6x 2 ^TR Q "Q" - Qr=	
1 + Lt (1 + 2E + E 2 +	 1	 (35)

1+2E+E

In terms of the properties of a homogeneous orthotropic material,

EE (36)
QJJQ^^ — Q^^ —	 1— v vxy yx

	

2̂ (	 )	 (37)
^J = vxyvYx +	 1- vxyvYx

xE,

ExEy	 (38)

	

q 
= 2G

-Y	

vxyvya
xy

	

P = R 1 - vxyv yx	 (39)

and

a„	

4	

(40)

R(E.^1\ Lam'., x 1

In these equations, the subscripts x and y have been used to designate the major and minor
principal material coordinates, instead of the subscripts 1 and 2, respectively, found in reference
29. After simplification, equation (35) becomes

2G E E

	

crx` = 1	 xY	 y	 1+2F+E
2

+	 1	 t	 (41a)

	

2	 3^ 1 - vxyv,)	 1 + 2E + E ? R

13



and equation (32b) for n = 0 becomes

CY =
	

E.E3,	 t	 (41b)
x	 R3^1 —vxyvyx)

When the effect of E on 6.' is negligible, the critical stress of equation (41a) is given by

2Gxy E.—E	 t	 (42a)
x	

3(1 — vxyvyx 
R

which is the same as that given by Dow and Rosen (reference 4). Also, equations (41b) and (42a)
reduce to the well-known formula

^x
cr	

E	
(R^

3 1 —(	 v-)

	 (42b)

for isotropic cylinders (see reference 30). In contrast to reference 20, equations (41b) and (42a)
are expressed in the form

Ox
Cr 
	

x E A)
	

(43a)

where cx is the smallest value of

2

2Uxy 
Bx	 1Ey

43
cx-	

E E	 E	
for n^0	

(43b)

(31 - vxyvyx )

Ex Ey

cx _
	 E E	

for n = 0	 (43c)
3(1 —vxyvyx

In equations (43), E is the effective elastic modulus of the corresponding quasi-isotropic

laminate. The critical strain is given by

__ _ _ t6
Ex E

x — 
cx E

x l R 1

It is also convenient to define, with regard to presentation of results, the critical stress and strain
for the corresponding quasi - isotropic laminate as

(44)
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z
p?n

(1+^)(1+!
3
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where c,, is given by

1̂- 
__	 1	 (45c)ca 
	 3(1 - v^)

for all values of n, and G and v are the effective shear modulus and Poisson's ratio. With these

representations, it follows that

cr —
cr — 1

EC	 C	
- Ex
	

(46)
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Important Considerations

It is important to note that Donnell's equations are typically inaccurate for small, nonzero

values of the circumferential wave number n. Let n denote the lower bound of n or for which

Donnell's equations are presumed to be accurate; i. e., n., ? ft. Equation (31) yields

This equation gives an estimate of the range of p that Donnell's equations are expected to be
accurate. The ranges of P and LU are defined by the shell wall construction (e. g., see reference
27).

In the formulation of the Donnell-type linear bifurcation equations presented herein, the
compression-loaded cylinder is presumed to be in a membrane compression-stress state prior to
buckling. This presumption implies that the zones of bending stresses induced by radial restraint
at the boundaries are small compared to the length of the cylinder, and that the bending stresses
have a second-order influence on the onset of buckling. As a result, it is important to have an
expression for the attenuation length of the bending-stress zones, denoted herein as d. The
desired expression is presented in reference 31 (see (19) and (21)) and given here as

1

d = -In -6 Rt	
Ex	

3	

(48)
3E,( 1 - vxyv,)
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where F denotes a prescribed attenuation tolerance. For 90% response attenuation, F = 0.1 and

— In e = 2.30.

Another important consideration is the stress level at which a long simply supported cylinder
buckles into an overall column mode. This stress level was derived from the equations given in
reference 32 (see pp. 171-173) and is given by

6 cr — 6Enler 1 
+ , (R/ 

E x 	 (49a)
x	 x	

Gxy

This expression includes the effects of transverse shear flexibility of a thin-walled circular
cylinder. The Euler stress, which neglects transverse shear flexibility, is given by

n2Ex1 — 2 l L )^E. 	
(49b)

AL-

where the moment of inertia for a thin-walled circular cylinder, I = JTR 3t, has been used and

A = 2jrRt is the cross-sectional area.

It is also important to note that equation (43a) does not account for the reduction in load-
carrying capacity associated with the presence of initial geometric imperfections. Therefore, the
critical stress should be multiplied by a knockdown factor ,I such as

^r = 1 —0.901(1 —e-16V7̂)

	
(50)

This knockdown factor is that given in NASA SP 8007 for orthotropic cylinders, but modified for
the case of a homogeneous specially orthotropic material by using equations (16). It is worth
noting that equation (50) is identical to the knockdown-factor equation in NASA SP 8007 for
isotropic cylinders, and is a lower bound to experimental data that is expected to yield very
conservative, and possibly overweight, designs.

Representation of Laminates as Homogeneous Orthotropic Materials

The practical wall constructions considered in the present study are laminated composites that
consist of three families of plies. These three families are 0-degree, 90-degree, and ±0 angle
plies. The positive value of the fiber angle associated with a specific ply, 0, is shown in figure 2.
The total thickness of the 0-degree, 90-degree, and ±0 angle plies are denoted by to , too , and te,

respectively, and the corresponding thickness fractions are t p = to , {90 — to , and to — to , where t

is the total laminate thickness. Following standard practice, the membrane stiffnesses of the
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laminated-composite wall, A^J (see equation (16a)), are given in terms of the x-y cylinder

coordinate system by
0	 90	 1	 e	 e

A ij — Q,jto + Qij t90 + 2 Qij + Qij t 8 	 (51)

—o _90 —s	 --e
where Q; , Q;; , Q;, and Q are the transformed reduced stiffnesses of the 0-degree, 90-degree,

and ±8 angle plies, respectively, commonly used in classical laminated-plate theory (see
reference 29). Applying equation (16a), the corresponding stiffnesses of a single layer of
homogeneous orthotropic material are given by

Qij = Quo + Q"t" + 2	 -,)te	 (52)(Qe + Q 

With the homogenized stiffnesses Q, j known, the corresponding engineering constants are given

by

Ex = Q„ _.Q	(53a)
Q_

I

Ey = Q„ — 
Q	

(53b)
^^ 

	

v xV 
= Q12	 (53c)

Q22

vyx =

	

Q12	 (53d)
Q.

	

GRy = %o	 (53e)

Results and Discussion

In the present section, results that establish the ranges of the nondimensional parameters and
coefficients defined by equations (17)-(20) are presented first. Then, general results that are given
in terms of the nondimensional parameters are presented that encompass a wide range of
geometries and laminate constructions. These general results also illustrate a wide spectrum of
behavioral trends. Finally, design-oriented results are presented that provide a simple, clear
indication of the effects of laminate composition on critical stress, critical strain, and axial
stiffness. In many of the figures presented herein, colored curves are used to enhance clarity of the
results.
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Parameter and Coefficient Ranges

To establish the range of validity of equations (32b) and (34a), the values of the
nondimensional parameters defined by equations (17) - (20) were computed for several laminate
configurations. In these calculations, the material properties for a generic graphite-epoxy material
were used. These properties are the elastic moduli E l = 20.0 Msi and E2 = 2.3 Msi, the shear
modulus G12 = 0.6 Msi, and major Poisson's ratio v 12 = 0.3.

Values of the parameters P and a are shown in figures 5 and 6, respectively, for shell walls
with a baseline content of 10% 90-degree plies, as a function of the fiber angle 0. Eight curves
are shown in each figure that correpond to shell walls comprised of percentages of 0-degree plies
that range from 10% to 80%. Similar results are shown in figures 7 and 8 for shell walls with a
baseline content of 50% 90-degree plies. Five curves are shown in figures 7 and 8 for
percentages of 0-degree plies that range from 0% to 40%. The results in these four figures,
along with results for other intermediate cases, indicate that 0.17 s (3 s 1.75 and - 0.03 <— 'u <
9.29. The larger values of P occur for values of 0 near 45 degrees and shell walls with 10% 0-
degree plies. In contrast, the smaller values of a occur for values of 0 near 45 degrees and shell
walls with 10% 0-degree plies.

To simplify the validation process, the parameters P and a were computed as parametric
functions of the fiber angle 0 for various percentages of 0-degree and 90-degree plies. These
results form the curve shown in figure 9. By using a least-square fit, the parameter a is expressed
in terms of (3 by

u = — 1.26 + 3.17e
-
' + 87.16e -2S — 717.12e -3s +2875.2e - " — 6559.92e - " +

8736.38e -6p — 6328.33e -' p 	+ 1942.14e-8p	
(54)

With this equation, the parameter a becomes a passive parameter in the validation process.

Values of the coefficients that multiply a,, in equation (40) and p in equation (39) are shown

in figures 10 and 11, respectively, for a baseline content of 10% 90-degree plies, as a function of
the fiber angle 0. In addition, the coefficient of the analogue of the Batdorf Z parameter given by

Z = pa,^ = L	 1 _ Qiz Q 22 	 L	 (1 — v x v x )EY	 (55)
Rt	 QIIQ» Q11	 Rt	

Y	 Ex

is shown in figure 12. Eight curves are shown in each figure that correpond to shell walls
comprised of percentages of 0-degree plies that range from 10% to 80 %. Similar curves are
presented in figures 13-15 for a baseline content of 50% 90-degree plies, as a function of the
fiber angle 0. Five curves are shown in each of these figures that correpond to shell walls
comprised of percentages of 0-degree plies that range from 0% to 40%.

The results in figures 10 and 13 show an increase in the moduli ratio (EA,,) U4 as the fiber

angle increases and as the percentage of 0-degree plies decreases. Moreover, the results show
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that 0.69:5 (E^E,)114 < 1.72 and that the moduli ratio generally increases as the percentage of 90-
degree plies increases. In contrast, the results in figures 11 and 14 show reductions in

10--_  vxyvyx as the fiber angle increases to 45 degrees, followed by increases as 0 increases

further. The largest and smallest reductions are exhibited by the laminates with 10% and 80%

zero-degree plies, respectively. The results also indicate that 0.81 s 	 1 - v,,v,x -< 1.00, and that

1- vx,v,,,^ generally diminishes as the percentage of 90 -degree plies increases. The results in

figures 12 and 15 exhibit trends similar to those in figures 10 and 13, and 0.47:5

(1 - v^v )El	 2.94.
E^

General Results

The nondimensional buckling loads given by equations (32b) and (34a) are shown in figures
16-22 as a function of the stiffness -weighted length -to-radius ratio a. defined by equation (17).

Eight curves that correspond to values of the orthotropy parameter 0.2 <_ P <- 1.6 are shown in
figures 16-18 for values of the stiffness -weighted thinness ratio p = 25, 100, and 200, respectively.
Similarly, seven curves for selected values of 25 <- p!5 250 are shown in figures 19-22 for values
of (3 = 02, 0.6, 1, and 1.6, respectively. The results in all these figures show a series of festoon
curves in which the amplitudes of the festoons attenuate to a negligible magnitude as the stiffness-
weighted length-to-radius ratio cc. increases. Likewise, the nondimensional buckling loads for a
given curve attenuate to the constant value associated with an infinitely long cylinder that buckles
into a local shell mode, not an overall column mode. Moreover, this value of the nondimensional
buckling load provides a very useful, practical lower bound to the corresponding festoon curve.
Generally, the results in figures 16-22 also show that as R, or p, increases the number of
festoons making up a curve increases, and the concentration of festoons shifts toward cc. = 0.

The practical lower bound character of the nondimensional buckling load of an infinitely long
cylinder that buckles into a local shell mode and not an overall column mode is shown
quantitatively in figure 23 for (3 = 0.2 and p = 25. The black festoon curve was obtained by
minimizing equation (21) with respect to the buckling -mode wave numbers in 	 n. The
horizontal blue and red lines were obtained by using equations ( 34) and (32), respectively, as
indicated by the superscripts on the nondimensional buckling loads shown. The relatively small
improvement in the lower bound predicted by these equations is associated with enforcing
circumferential periodicity by using equations (33) and (34). The corresponding percent
differences are shown in figure 24 and indicate that an improvement of about 1 .5% is obtained by
enforcing circumferential periodicity for this case.

To assess the relative accuracy of equations (32) and (34), for the range of parameters
previously described herein, the nondimensional buckling loads for an infinitely long cylinder
obtained from equations (24), (32), and (34) were computed for 0.2 s R <_ 1 . 8, in increments of
0.0 1, and for p = 25, 50, 75, 100, 150, 200, 250, and 500. Some selections of these results are
presented in Tables 1-5. The solutions obtained from minimization of equation (24) with respect
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to the axial half-wave length k and the circumferential wave number n are the most accurate of
the three solutions. For every combination, the magnitude of the overall maximum difference
between equations (24) and (32) was found to be less than 2.5 %, with the difference decreasing
substantially as p increases. For p > 75, the maximum difference is less than 1.1%. Likewise,
the magnitude of the overall maximum difference between equations (24) and (34), for which
circumferential periodicity is enforced, was found to be less that 0.9 %, and in most cases, the
magnitude of the maximum difference was significantly smaller.

Design-Oriented Results

The results presented in figures 16-22 for finite-len gth cylinders suggest that equations (43)
and (44) are well-suited for designing cylinders of moderate length. In addition, because of the
uncertainty usually involved with material properties and other items, these equations should
yield practical, conservative estimates of the response for values of the stiffness-weighted length-
to-radius ratio where the festoons are prominent. That is, designing a cylinder to take advantage of
load-carrying capacity in the peak of a festoon curve is likely to have significant risk associated
with it if the festoons are steep and densely packed.

Critical stress as a function of critical strain. In many design applications, the axial stiffness
of a cylinder is as important as its buckling load. To provide insight into these designs, critical
stresses and strains for homogeneous orthotropic cylinders, obtained from equations (43)-(46),
are plotted in the generic form illustrated in figure 25. The curve shown in this figure gives a
critical stress ratio as a parametric function of a critical strain ratio, in which the percentage of
0-degree plies is a continuously varying parameter and the fiber angle and percentage of 90-
degree plies are fixed values. Values of the parameter increase monotonically from a value of zero,
which is indicated on the curve by the filled black circular symbol (origin). The unfilled circular
symbols represent values of the parameter that correspond to 10% increments, and the filled
square symbol denotes 50% 0-degree plies. Altogether, the symbols are used to define an arc-
length coordinate system for the curve. The critical stresses and strains in this figure are

cr	 cr

normalized by the critical stress a x and strain sx of the corresponding quasi-isotropic laminate,

respectively (see equations (45)). Thus, laminate constructions with the coordinates (1, 1) on the
graph correspond to a quasi-isotropic laminate. In addition, the normalized-stiffness line passing
through an arbitrary point of the curve has the slope given by equation (46). For the graphite-
epoxy material used in the present study, the effective modulus and Poisson's ratio used in

equations (45) are given by E = 7.89 Msi and v = 0.34, respectively. For these values, equation

(45c) yields c,, = 0.61.

The utility of the graph shown in figure 25 becomes apparent by noting that as the curve is
traversed by increasing the percentage of 0-degree plies, the axial stiffness increases, with a
maximum value exhibited for 100% 0-degree plies, as expected. In addition, the critical strain
decreases and the critical stress increases, up to a maximum value and then diminishes
monotonically to a minimum value. This transition point is associated with the transition from
solutions associated with n = 0 to those with n ^ 0 (see equations (43)). The n = 0 solutions in
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figure 25 correspond to points on the curve with Ê  >1. Although the maximum point shown on

Ex

the curve in this figure is at the point (1, 1) and corresponds to a quasi-isotropic laminate, it
generally does not.

Curves similar to the one shown in figure 25 are shown in figures 26-28 for values of the fiber
angle 6 = 30, 45, and 60, respectively. Five curves are shown in each figure that correspond to
distinct values of 0%, 10%, 25%, 33.33%, and 50% 90-degree plies. For each curve, the
percentage of 0-degree plies (the arc-length parameter) ranges for 0% to 100% minus the
percentage of 90-degree plies. One curve in each of these figures passes through the point (1, 1)
and the corresponding quasi-isotropic stacking sequence is indicated on each figure. Curves
similar to the one shown in figure 25 are also shown in figures 29-33 for values of the percentage
of 90-degree plies = 0%, 10%, 25%, 33.33%, and 50%, respectively. Three curves are shown in
each figure that correspond to distinct values of the fiber angle 0 = 30, 45, and 60, respectively.
For each of these curves, the percentage of 0-degree plies (the arc-length parameter) also ranges
from 0% to 100% minus the percentage of 90-degree plies. The results in figures 26-33 give a
simple, clear indication of how fiber angle, percentage of 0-degree plies, and percentage of 90-
degree plies can be adjusted to meet stress, strain, and stiffness requirements.

Column design considering local buckling. The design of an efficient thin-walled column
requires a high local wall-buckling resistance and a high axial stiffness, needed to resist overall
column buckling. The trade off between these two design quantities is clearly illustrated in
figures 25-33, as a function of laminate construction. Although a quasi-isotropic laminate always
provides the highest possible wall-buckling stress, for a given radius and thickness, the effective
axial stiffness of the laminate is only about 40% of the lamina modulus, E l . To demonstrate the

potential for designing laminates with higher axial stiffness, consider the critical-stress-versus-
critical-strain results presented in figure 29 for laminates with no 90-degree plies and the
optimized column design presented in reference 23. This optimized design corresponds to the 16-
ply laminate, (±55/0 6) 5 , which has 75% 0-degree plies that are "sandwiched" between relatively

thin angle-ply face-sheet layers. The buckling load for this laminate was obtained by using
equation (15), which presumes that the effects of anisotropy in the form of coupling between
bending and twisting are negligible. The results in figure 29 are reproduced in figure 34, along
with results for the optimized design of reference 23. However, in figure 34, the arc-length
coordinates have been omitted for clarity. In assessing the merit of a design, it is important to note
that the left-hand-most portion of the curves represents the maximum values of stiffness (lower
strain) for a given buckling-stress level of a homogeneous orthotropic cylinder.

The filled circular symbol shown on figure 34 corresponds to the optimized design presented in
reference 23. Since this data point is slightly to the left of the curves for the homogeneous
orthotropic laminates, the design is more structurally efficient. The data point that corresponds to
representing the (±55/0 6)5 laminate as a homogeneous orthotropic laminate is given by the unfilled

circular symbol. This homogenized version has a critical stress that is approximately 11% lower
than the (±55/0 6) 5 laminate, and both laminates have an effective axial modulus equal to 1.96

times the effective modulus of the corresponding quasi-isotropic laminate. However, a
homogeneous orthotropic laminate with 68% 0-degree plies and 32% 45-degree plies, indicated
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by the unfilled square symbol, has the same critical stress as the (±55/0 6)5 laminate and is only 61/c

less stiff. In addition, the homogenized laminate is only 3% heavier than the optimized laminate
of reference 23.

An extensive number of laminate constructions were examined in the present study to
determine the merit of representing laminates by their corresponding homogeneous, orthotropic
configurations. This effort revealed that the only lay-ups that exceed the critical stress of the
corresponding homogenized laminate are those such as the (±55/0 6)5 laminate of reference 23 that

consist of many unidirectional plies "sandwiched" between a few outside angle plies. Although
these sandwich laminates provide slightly higher buckling resistance, high concentrations of plies
with the same orientation are likely to result in unacceptable interlaminar shear stresses.

Sending boundary layer attenuation lengths. The buckling analysis presented herein
presumes the existence of a uniform, membrane stress state prior to buckling. However, zones of
bending stresses occur near the cylinder ends, where radial displacement is constrained, and the
extent of these zones is known to depend on laminate orthotropy (see reference 31). The distance
from the end of a cylinder to a point along the cylinder generator where the magnitude of the
bending stresses has attenuated to a prescribed value is referred to herein as the bending boundary
layer attenuation length. The presumption of a membrane prebuckling stress state is typically
justified when the bending boundary layer attenuation length is "relatively small" compared to the
cylinder length. Thus, having an estimate of the attenuation length associated with a design
provides the designer with an indicator of when a more refined buckling analysis may be needed.

Results that show the nondimensional attenuation length of the bending boundary layer are
presented in figures 35-37 for values of 0%, 10%, and 50% 90-degree plies, respectively. These
attenuation lengths were computed by using equation (48) and are based on a 90% response
attenuation tolerance. Several curves are shown in each figure that correspond to values of the
percentage of 0-degree plies that range from 10% to 80% 0-degree plies. The solid horizontal red
line shown in each figure corresponds to the nondimensional attenuation length of the
corresponding quasi-isotropic lanunate. The unfilled circular symbols in figure 35 and 37
correspond to (0/±60) and (0/90) laminates, respectively. The filled symbol on figure 35
corresponds to the (±55/0 6) 5 laminate of reference 23 and its homogenized counterpart. The
results for each of these three figures show a monotonic reduction in the attenuation length as the
fiber angle increases from 0 to 90 degrees. In addition, each figure generally exhibits a reduction
in the attenuation length as the percentage of 0-degree plies diminishes. Furthermore, a reduction
in the attenuation length is shown in these three figures as the percentage of 90-degree plies
increases.

Concluding Remarks

Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-
composite cylinders have been presented that are the counterpart of the classical buckling formula
for an isotropic cylinder. The formulas were obtained by using nondimensional parameters and
equations that facilitate general validation. Numerous results have been presented that establish
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the ranges of the nondimensional parameters and coefficients for homogeneous specially
orthotropic laminated composites that consist of three families of plies. These three families are
0-degree, 90-degree, and ±0 angle plies. Numerous results have also been presented that validate
the simple formulas against the exact solution for a wide range of cylinder geometries and
laminate constructions. The validation process was greatly simplified by establishing a
parametric relationship between the parameters used in the analysis that give the membrane-
orthotropy parameter in terms of the flexural-orthotropy parameter. A formula for the buckling
stress has been given as a product of a nondimensional coefficient, that involves only material
properties of the wall, with the thickness-to-radius ratio of the cylinder and the effective modulus
of the corresponding quasi-isotropic laminate. Unlike the corresponding isotropic-cylinder
solution, that is represented by a single equation, two equations that depend on the laminate
orthotropy were found to be needed to obtain the orthotropic-cylinder solution; one for
axisymmetric and one for asymmetric buckling modes.

General results, given in terms of the nondimensional parameters used herein, have also been
presented that encompass a wide range of geometries and laminate constructions. These general
results also illustrate a wide spectrum of behavioral trends associated with variations in cylinder
thinness, aspect ratio, and orthotropy. Design-oriented results have also been presented that
provide a simple, clear indication of laminate composition on critical stress, critical strain, and
axial stiffness. A very useful graphical form of these results has been presented that enables rapid
trade studies for different design requirements. One conclusion found in the present study is that
no buckling stress can be achieved for homogeneous specially orthotropic cylinders that is greater
than the corresponding quasi-isotropic layup. Another conclusion is that the greater values of
buckling stress that can be achieved through tailoring are associated with higher values of axial
strain. An example has been provided that demonstrates the application of these results to thin-
walled column designs that involve axial stiffness of the cylinder in addition to local buckling.
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Table 1. Axial half-wavelength, circumferential wave number, and nondimensional load for
buckled cylinders with orthotropy parameter (3 = 0.2, for selected values of the stiffness-
weighted radius-to-thickness ratio p (superscripts in parentheses indicate equation
numbers)

P ]t.(24)er R(24)ar (24)Par
^^30, 32a)

ar
n(31)

er
(32)

Pei
X-( 33)

er II-
(33)

er
34)Pa

25 0.250 4 6.60 0.274 3.65 6.50 0.250 4.00 6.60

50 0.200 5 13.02 0.193 5.17 12.99 0.200 5.00 13.02

75 0.167 6 19.60 0.158 6.33 19.49 0.167 6.00 19.60

100 0.143 7 26.08 0.137 7.31 25.98 0.143 7.00 26.08

125 0.125 8 32.51 0.122 8.17 32.48 0.125 8.00 32.51

150 0.111 9 38.98 0.112 8.95 38.97 0.111 9.00 38.98

175 0.100 10 45.57 0.103 9.67 45.47 0.100 10.00 45.57

200 0.100 10 52.08 0.097 10.34 51.97 0.100 10.00 52.08

225 0.091 11 58.46 0.091 10.96 58.46 0.091 11.00 58.46

250 0.083 12 65.14 0.087 11.56 64.96 0.083 12.00 65.14

275 0.083 12 71.47 0.083 12.12 71.45 0.083 12.00 71.47

300 0.077 13 78.06 0.079 12.66 77.95 0.077 13.00 78.06

325 0.077 13 84.47 0.076 13.18 84.44 0.077 13.00 84.47

350 0.071 14 91.04 0.073 13.67 90.94 0.071 14.00 91.04

375 0.071 14 97.46 0.071 14.15 97.44 0.071 14.00 97.46

400 0.067 15 104.07 0.068 14.62 103.93 0.067 15.00 104.07

425 0.067 15 110.43 0.066 15.07 110.43 0.067 15.00 110.43

450 0.063 16 117.16 0.064 15.51 116.92 0.063 16.00 117.15

475 0.063 16 123.43 0.063 15.93 123.42 0.063 16.00 123.42

500 0.063 16 130.04 0.061 16.34 129.91 0.063 16.00 130.03
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Table 2. Axial half-wavelength, circumferential wave number, and nondimensional load for
buckled cylinders with orthotropy parameter (3 = 0.5, for selected values of the stiffness-
weighted radius-to-thickness ratio p (superscripts in parentheses indicate equation
numbers)

P X.
(24) n

cr
(24)

P.
^(30,32c)

l)n(tt
(32)

P cr ^.-)33)cr Il- ) 33)cr (34)Pcr

25 0.250 4 11.13 0.235 4.26 11.04 0.250 4.00 11.13

50 0.167 6 22.08 0.166 6.03 22.07 0.167 6.00 22.08

75 0.143 7 33.30 0.135 7.38 33.11 0.143 7.00 33.30

100 0.111 9 44.41 0.117 8.52 44.15 0.111 9.00 44.41

125 0.100 10 55.44 0.105 9.53 55.19 0.100 10.00 55.44

150 0.100 10 66.47 0.096 10.44 66.22 0.100 10.00 66.47

175 0.091 11 77.35 0.089 11.27 77.26 0.091 11.00 77.35

200 0.083 12 88.30 0.083 12.05 88.30 0.083 12.00 88.30

225 0.077 13 99.39 0.078 12.78 99.33 0.077 13.00 99.39

250 0.077 13 110.66 0.074 13.47 110.37 0.077 13.00 110.66

275 0.071 14 121.43 0.071 14.13 121.41 0.071 14.00 121.43

300 0.067 15 132.52 0.068 14.76 132.45 0.067 15.00 132.52

325 0.067 15 143.65 0.065 15.36 143.48 0.067 15.00 143.65

350 0.063 16 154.53 0.063 15.94 154.52 0.063 16.00 154.52

375 0.059 17 165.85 0.061 16.50 165.56 0.059 17.00 165.85

400 0.059 17 176.60 0.059 17.04 176.60 0.059 17.00 176.60

425 0.056 18 187.86 0.057 17.57 187.63 0.056 18.00 187.85

450 0.056 18 198.68 0.055 18.08 198.67 0.056 18.00 198.68

475 0.053 19 209.93 0.054 18.57 209.71 0.053 19.00 209.92

500 0.053 19 220.75 0.052 19.06 220.74 0.053 19.00 220.75
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Table 3. Axial half-wavelength, circumferential wave number, and nondimensional load for
buckled cylinders with orthotropy parameter P = 0.75, for selected values of the
stiffness-weighted radius-to-thickness ratio p (superscripts in parentheses indicate
equation numbers)

P X.
(24)

ncr
(24)

P.
^(30,32c)

l)n(tt
(32)

Pcr ^.-)33)cr Il-)33)cr (34)Pcr

25 0.200 5 14.64 0.223 4.49 14.31 0.250 4.00 14.69

50 0.167 6 28.80 0.157 6.35 28.61 0.167 6.00 28.80

75 0.125 8 42.99 0.129 7.78 42.92 0.125 8.00 42.99

100 0.111 9 57.23 0.111 8.98 57.23 0.111 9.00 57.23

125 0.100 10 71.54 0.100 10.04 71.53 0.100 10.00 71.54

150 0.091 11 85.84 0.091 11.00 85.84 0.091 11.00 85.84

175 0.083 12 100.17 0.084 11.88 100.15 0.083 12.00 100.16

200 0.077 13 114.57 0.079 12.70 114.45 0.077 13.00 114.57

225 0.077 13 129.09 0.074 13.47 128.76 0.077 13.00 129.09

250 0.071 14 143.13 0.070 14.20 143.07 0.071 14.00 143.12

275 0.067 15 157.39 0.067 14.90 157.37 0.067 15.00 157.39

300 0.063 16 171.95 0.064 15.56 171.68 0.063 16.00 171.95

325 0.063 16 186.04 0.062 16.19 185.98 0.063 16.00 186.04

350 0.059 17 200.34 0.060 16.80 200.29 0.059 17.00 200.34

375 0.059 17 214.82 0.057 17.39 214.60 0.059 17.00 214.82

400 0.056 18 228.91 0.056 17.97 228.90 0.056 18.00 228.91

425 0.053 19 243.53 0.054 18.52 243.21 0.053 19.00 243.53

450 0.053 19 257.52 0.052 19.05 257.52 0.053 19.00 257.52

475 0.050 20 272.07 0.051 19.58 271.82 0.050 20.00 272.07

500 0.050 20 286.14 0.050 20.09 286.13 0.050 20.00 286.14
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Table 4. Axial half-wavelength, circumferential wave number, and nondimensional load for
buckled cylinders with orthotropy parameter P = 1 (isotropic material), for selected
values of the stiffness-weighted radius-to-thickness ratio p (superscripts in parentheses
indicate equation numbers)

P X.
(24)

ncr
(24)

P.
^(30,32c)

l)n(tt
(32)

Pcr ^.-)33)cr Il-)33)cr (34)Pcr

25 0.107 0 17.55 0.107 0.00 17.55 0.107 0.00 17.55

50 0.076 0 35.10 0.076 0.00 35.10 0.076 0.00 35.10

75 0.062 0 52.65 0.062 0.00 52.65 0.062 0.00 52.65

100 0.054 1 70.20 0.054 0.00 70.20 0.054 0.00 70.20

125 0.048 0 87.75 0.048 0.00 87.75 0.048 0.00 87.75

150 0.044 1 105.30 0.044 0.00 105.30 0.044 0.00 105.30

175 0.041 2 122.85 0.041 0.00 122.85 0.041 0.00 122.85

200 0.038 0 140.39 0.038 0.00 140.39 0.038 0.00 140.39

225 0.036 2 157.95 0.036 0.00 157.94 0.036 0.00 157.94

250 0.034 0 175.49 0.034 0.00 175.49 0.034 0.00 175.49

275 1.896 4 193.06 0.032 0.00 193.04 0.032 0.00 193.04

300 0.031 0 210.59 0.031 0.00 210.59 0.031 0.00 210.59

325 0.030 2 228.15 0.030 0.00 228.14 0.030 0.00 228.14

350 0.029 3 245.70 0.029 0.00 245.69 0.029 0.00 245.69

375 0.028 3 263.25 0.028 0.00 263.24 0.028 0.00 263.24

400 0.027 2 280.80 0.027 0.00 280.79 0.027 0.00 280.79

425 0.026 0 298.34 0.026 0.00 298.34 0.026 0.00 298.34

450 2.442 4 315.90 0.025 0.00 315.89 0.025 0.00 315.89

475 2.510 4 333.45 0.025 0.00 333.44 0.025 0.00 333.44

500 0.024 0 350.99 0.024 0.00 350.99 0.024 0.00 350.99
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Table 5. Axial half-wavelength, circumferential wave number, and nondimensional load for
buckled cylinders with orthotropy parameter (3 = 1.5, for selected values of the stiffness-
weighted radius-to-thickness ratio p (superscripts in parentheses indicate equation
numbers)

P X.
(24) n

cr
(24)

P.
^(30,32c)

l)n(tt
(32)

P cr ^.-)33)cr Il- ) 33)cr (34)Pcr

25 0.107 0 17.55 0.107 0.00 17.55 0.107 0.00 17.55

50 0.076 0 35.10 0.076 0.00 35.10 0.076 0.00 35.10

75 0.062 0 52.65 0.062 0.00 52.65 0.062 0.00 52.65

100 0.054 0 70.20 0.054 0.00 70.20 0.054 0.00 70.20

125 0.048 0 87.75 0.048 0.00 87.75 0.048 0.00 87.75

150 0.044 0 105.30 0.044 0.00 105.30 0.044 0.00 105.30

175 0.041 0 122.85 0.041 0.00 122.85 0.041 0.00 122.85

200 0.038 0 140.39 0.038 0.00 140.39 0.038 0.00 140.39

225 0.036 0 157.94 0.036 0.00 157.94 0.036 0.00 157.94

250 0.034 0 175.49 0.034 0.00 175.49 0.034 0.00 175.49

275 0.032 0 193.04 0.032 0.00 193.04 0.032 0.00 193.04

300 0.031 0 210.59 0.031 0.00 210.59 0.031 0.00 210.59

325 0.030 0 228.14 0.030 0.00 228.14 0.030 0.00 228.14

350 0.029 0 245.69 0.029 0.00 245.69 0.029 0.00 245.69

375 0.028 0 263.24 0.028 0.00 263.24 0.028 0.00 263.24

400 0.027 0 280.79 0.027 0.00 280.79 0.027 0.00 280.79

425 0.026 0 298.34 0.026 0.00 298.34 0.026 0.00 298.34

450 0.025 0 315.89 0.025 0.00 315.89 0.025 0.00 315.89

475 0.025 0 333.44 0.025 0.00 333.44 0.025 0.00 333.44

500 0.024 0 350.99 0.024 0.00 350.99 0.024 0.00 350.99
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Figure 1. The Altair lunar lander.
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Figure 2. Cylinder geometry, surface coordinate system, and lamina fiber orientation.
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n=1	 n=2	 n=3	 n=4

n=5	 n=6	 n=7	 n=8

n=9	 n=10	 n=11	 n=12

n=13	 n=14	 n=15	 n=16

Figure 3. Circumferential waveforms used in equation (12).
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Buckle

(a) Three-dimensional rendering of a buckling mode

Axial half-wave length

2nR	 I	 j mcr = 2

ncr = 4

L
L

(b) Contour plot of the radial displacement

Figure 4. Typical buckle pattern of a compression-loaded cylinder.
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Figure 5. Effects of fiber angle and percentage of 0-degree plies on nondimensional flexural orthotropy
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Figure 17. Effects of parameters a,,, and 0 on nondimensional buckling loads on
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Figure 20. Effects of parameters an, and p on nondimensional buckling loads on
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Figure 21. Effects of parameters a,,, and p on nondimensional buckling loads on
cylinders with nondimensional orthotropy parameter 0 = 1.

42



^ ^21)

p ^,

0

0.'34
)(34)

^,

(32)

p

	

240	 Q12 + 2Q66

—	 Q11Qzz
Q2

	

200	 p = R	 1 _ Q2

	

T
	 Q11Q22

12N,, R2	 250

p ` r 
_ it2ti Q11/	 q zz 

t3 160

200

120

150

80
100

75

	

40	 50

p=25
0

0	 1	 2	 3	 ,	 4
Stiffness-weighted length-to-radius ratio, a n, = 

R(Q22\4

II`
	 ,1

Figure 22. Effects of parameters a,„ and p on nondimensional buckling loads on
cylinders with nondimensional orthotropy parameter 0 = 1.6.
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Figure 27. Effects of the percentage of 0-degree and 90-degree plies on the critical-strain and critical -stress
ratios for shell walls with a fiber angle 0 = 45 degrees.
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Figure 28. Effects of the percentage of 0-degree and 90-degree plies on the critical-strain and critical-stress
ratios for shell walls with a fiber angle 6 = 60 degrees.
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Figure 29. Effects of the fiber angle 6 and the percentage of 0-degree plies on the critical-strain and critical-stress
ratios for shell walls with no 90-degree plies.

46



1.0

0.5

Critical-stress
ratio,

cr(IX

_cr
6X

deg	
8 = 60 deg

1.0

Critical-stress
ratio,

cr
OX
_er
6X

0.5

(0/±45/90) Laminate

25% 90-deg plies

10% 90-deg plies

0
0	 0.5	 1.0	 1.5	 c ,	 2.0	 2.5

E
Critical-strain ratio, _cr

EX

Figure 30. Effects of the fiber angle 0 and the percentage of 0-degree plies on the critical-strain and critical-stress
ratios for shell walls with 10% 90-degree plies.
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Figure 31. Effects of the fiber angle 0 and the percentage of 0-degree plies on the critical-strain and critical-stress
ratios for shell walls with 25% 90-degree plies.
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Figure 32. Effects of the fiber angle 8 and the percentage of 0-degree plies on the critical-strain and critical-stress
ratios for shell walls with 33.3370 90-degree plies.
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Figure 33. Effects of the fiber angle 8 and the percentage of 0-degree plies on the critical-strain and critical-stress
ratios for shell walls with 50% 90-degree plies.
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Figure 34. Critical-strain and critical-stress ratios for selected laminates with no 90-degree plies.
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Figure 35. Effects of fiber angle and percentage of 0-degree plies on the nondimensional attenuation length
for shell walls with no 90-degree plies.
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Figure 36. Effects of fiber angle and percentage of 0-degree plies on the nondimensional attenuation length
for shell walls with 10% 90-degree plies.
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Figure 37. Effects of fiber angle and percentage of 0-degree plies on the nondimensional attenuation length
for shell walls with 50% 90-degree plies.
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